Векторлар және оларға амалдар қолдану

Уикипедия — ашық энциклопедиясынан алынған мәлімет
Jump to navigation Jump to search

Өзінің сандық мәнімен қоса кеңістіктегі бағытымен де сипатталатын шамалар векторлық шамалар немесе векторлар деп аталады.

Сонымен, орын ауыстыру векторлық шама болып табылады. Векторларды бағытталған кесінді түрінде кескіндейді және бір әріппен немесе вектордың басы мен ұшын көрсететін екі әріппен белгілеп, төбесіне нұскама (стрелка) қояды. Мысалы жылдамдық векторын ʋ немесе АВ, күш векторын F немесе CD түрінде кескіндеуге болады.

Кеңістікте белгілі бір бағыты болмайтын, тек сандық мәнімен ғана сипатталатын шаталар скалярлық шамалар немесе скалярлар деп аталады. Мысалы, уақыт, заттың тығыздығы, дененің көлемі, температура, арақашықтығын (орын ауыстыру емес), сынып бөлмесінің ұзындығы, ені және биіктігі, т.с.с. скалярлық шамаларға жатады.

Кез келген вектордың сандық мәні оның модулі деп аталады.Модуль — скалярлық шама.

Егер a және b векторларының модульдері мен бағыттары бірдей болса, онда олар тең болады а = b. Ал векторлардың модульдері тең болып, бірақ бағыттары қарама-қарсы болса, онда а = - b болады.

Векторларды қосу[өңдеу]

Мысалы, кез келген а және b векторлары берілсін. Осы векторларды қосып, a + b-ға тең болатын с векторын табу керек. Ол үшін векторды өзіне-өзін параллель көшіргенде вектор өзгермейді дейтін ережені пайдаланамыз. Осы ереженің көмегімен векторларды қосудың бірнеше тәсілдерін көрсетуге болады. Мысалы, екі векторды бастарын түйістіре параллелограмның екі қабырғасы болатындай етіп өз-өзіне параллель көшіреміз де, параллелограмм саламыз. Сонда екі вектордың шыққан нүктесінен жургізілген бағыты көрсетілген диагональ қорытқы вектор болып табылады . Векторларды осылайша қосу параллелограмм ережесі бойынша қосу деп аталады.

Векторларды қосуда үшбұрыш ережесін де қолдануға болады. Ол үшін берілген векторларды бірінші вектордың ұшы екінші вектордың басымен түйісетіндей етіп, өз-өзіне параллель көшіреміз. Сонда бірінші вектордың басынан екінші вектордің ұшына қарай жүргізілген вектор сол екі вектордың қосындысын береді.

Ал енді екеу емес, бірнеше векторды қосу керек болса. Онда векторларды, алдыңғы вектордың ұшына келесі вектордың басы жалғасатындай етіп, әркайсысын параллель көшіреміз. Сонда алынған көпбұрыштың басы мен ұшын тұйықтап тұрған R векторы қорытқы вектор болып есептеледі. Ол бірінші вектордың басынан соңғы вектордың ұшына қарай бағытталады және мынаған тең болады: R = Ғ123 + Ғ4.

Векторларды азайту[өңдеу]

Векторларды косу ережесінен векторларды азайту ережесін шығарып алуға болады. Мысалы, с = а - b векторын табу керек болсын. Бұл теңдікті с = a + ( - b) түрінде жазуға болады, яғни векторлардың айырымын табу үшін а азайғыш векторға модулі азайткыш векторға тең, бірақ оған карама-карсы бағытталған - b векторын қосу керек. Немесе екі векторды өздеріне параллель көшіріп, бастары бір нүктеден шығатындай етіп орналастырамыз. Содан соң олардың ұштарын азайтқыштан (b) азайғышка (a ) қарай бағытталған вектормен қосамыз. Міне, осы с векторы қорытқы вектор болады.

Бір тузудің бойында жатқан немесе бір-біріне параллель[өңдеу]

Бір түзудің бойында жатқан немесе бір-біріне параллель векторлар бір жаққа қарай не қарама-қарсы бағытталуы мүмкін.

Мұндай векторлар а және b векторлары сияқты қосылады, яғни бірінші вектордың ұшы екінші вектордың басымен қосылады. Қорытқы вектор модулі бойынша қосылатын векторлар модульдерінің арифметикалық қосындысына немесе арифметикалық айырымына тең. Қорытқы вектор қосылатын векторлармен бағыттас модулі үлкен вектор жаққа қарай бағытталады.

Векторларды скалярға көбейту (бөлу)[өңдеу]

Берілген а векторын кез келген k скалярға көбейту (бөлу) үшін осы вектордың модулін берілген санға көбейтеміз (бөлеміз): b = k • a (b = a :k). Қорытқы b вектордың бағыты k көбейткішінің (бөлгішінің) таңбасымен анықталады. Егер k оң болса (k > 0), онда b векторы а векторымен бағыттас, ал k теріс болса (k < 0), b векторының бағыты а векторының бағытына қарама-қарсы болады.[1]

Дереккөздер[өңдеу]

  1. Физика және астрономия: Жалпы білім беретін мектептің 9-сыныбына арналған оқулық. Өңд., толыкт. 2-бас. / Р. Башарұлы, Д. Қазақбаева, У. Тоқбергенова, Н. Бекбасар. — Алматы: "Мектеп" баспасы, 2009. — 240 бет, суретті. ISBN 9965-36-700-0