Математикалық талдау

Уикипедия — ашық энциклопедиясынан алынған мәлімет
Мұнда ауысу: шарлау, іздеу

Математикалық анализ — математиканың функцияларды дифференциалдық және интегралдық есептеулер әдістерімен зерттейтін бөлімі. М. а-дің негізгі зерттеу құралы — шектер әдісі. М. а-дің дамуы нәтижесінде функциядан кеңірек ұғым функционал, оператор ұғымдары пайда болды. Табиғат пен техникада функциялар арқылы құбылыстар, қозғалыстар көптеп кездеседі. Сондықтан М. а-дің функцияларды зерттейтін құрал ретіндегі маңызы зор. Ол математиканың үлкен бөлігін қамтиды. Оған жалпы жағдайда дифференциалдық есептеу және интегралдық есептеу, нақты және жорымал айнымалы функциялар теориясы, комплексті айнымалы функциялар теориясы, жуықтау функциясы, дифференциалдық теңдеулер теориясы, интегралдық теңдеулер теориясы, дифференциалдық геометрия, вариациялық есептеулер, функционалдық анализ, т.б. математиканың бөлімдері кіреді.

Тарихы[өңдеу]

17 ғ-ға дейін М. а. дербес есептер шешімінің жиынтығы ретінде ғана танылды. Әрбір есептер мен дербес топтар өз әдістерімен шешілді. 17 — 18 ғ-ларда И.Ньютон, неміс математигі әрі физигі Г.Лейбниц (1646 — 1716), Ресей физик-математигі, механигі Л.Эйлер (1707 — 1783), француз математигі және механигі Ж.Лагранж (1736 — 1813), т.б. ғалымдардың еңбектерінде бір жүйеге келтірілді. Ал М. а-дің базасы — шектер теориясын 19 ғ-дың басында француз математигі О.Коши (1789— 1857) жасады. М. а. нақты сандар теориясын, шектер теориясын, қатар теориясын, дифференциалдық және интегралдық есептеулер және соларға қатысты қосымшаларды, айқын емес функцияларды, Фурье қатарын, Фурье интегралын, т.б-ларды біріктіретін М. а-дің негізі. М. а-дің әдістері сандар теориясы мен ықтималдықтар теориясында қолданылады және жетілдіріледі. Ә. Түнғатаров

[1]

Дереккөздер[өңдеу]

"Қазақ Энциклопедиясы", 6 том

Сілтемелер[өңдеу]

  1. Қазақ Энциклопедиясы