Жарықтың интерференциясы

Уикипедия — ашық энциклопедиясынан алынған мәлімет
Навигацияға өту Іздеуге өту

Көрінетін жарық дегеніміз — ұзындығы 780 нм-ден (қызыл жарық) 400 нм (күлгін жарық) аралығында болатын электромагниттік толқындар. Әйтсе де, мұның физикалық негізінде басқа электромагниттік толқындардан (радиотолқыннан, инфрақызыл, ультракүлгін, рентген және гамма сәулелерден) ешқандай өзгешелігі жоқ. Көрінетін жарықтың, сондай-ақ инфрақызыл және ультракүлгін сәуле шығару механизмі "Атомдық физика" тарауында қарастырылады. Артық энергиясы бар қозған атомдар энергиясы аз күйге ауысады да электромагниттік толқындар шығарады, демек, жарық шығарылады. Бұл процестің ұзақтығы 10 нс-ке созылады, сөйтіп, атом синусоиданың бір үзігін шығарады.

Оны толқындық цуг (цуг — немісше салтанатты жүріс) деп атайды (4.9-сурет). Вакуумдегі толқындық цугтың ұзындығы l = сτ ≈ 3 м, жарық толқынның ұзындығы шамамен 10−6 м. Демек, толқындық цугке бірнеше миллион толқын ұзындығы сыяды екен. Күнделікті тұрмыста жарық бір уақытта көптеген әр түрлі жарық көздерінен таралады. Бұл толқындар бір-бірімен кездескенде қабаттасып жатады. Бірақ бір-бірінің әрі қарай таралуына кедергі келтірмейді. Сондықтан заттардың бейнесі бізге бұзылмай көрінеді. Себебі, электромагниттік толқындардағы электрлік және магниттік өрістер вакуумде таралғанда өздерінің бағыттарын өзгертпейді, электрлік және магниттік өрістердің кернеуліктерінің шамасы сол күйде болады.

Көрінетін жарық дегеніміз – ұзындығы 780 нм-ден 400 нм аралығында болатын электромагниттік тоқындар. Артық энергиясы бар қозған атомдар энергиясы аз күйге ауысады да электромагниттік толқындар шығарады, демек, жарық шығарады. Бұл процестің ұзақтығы 10 нс-ке созылады., сөйтіп атом синусоиданың бір үзігін шығарады. Оны толқындық цуг деп атайды.

Интерференция құбылысын 1675 жылы Ньютон, одан кейін Юнг және Френель байқаған.

Жарық толқынының интерференциясы тек когерентті толқындар қабаттасқанда ғана пайда болады.

Жарық интерференциясын тұрмыста қолдану

[өңдеу | қайнарын өңдеу]

Интерферометрлер - өте кішкене бұрыштарды дәл өлшеуге, жарық толқынының ұзындығын, кіші кесінділерін ұзындығын, әр түрлі заттардың сыну көрсеткіштерін анықтауға, беттің өңделу сапасын тексеруге және беттің жылтырау дәлдігін анықтауға арналған аспаа.

Интерференция жарқындату үшін қолданылады, яғни интерференция көмегімен шағылған сәулелердің шамасын не көбейтуге, не азайтуға болады.

Интерферометрлер көмегімен қатты денелердің сызықтық ұлғаю коэффициентін анықтауға, ферромагниттер шамасының өзгеруін өлшеуге болады.

Голографияда қолданылады.

Кеңістікте бір уақытта бірнеше электромагниттік толқындар болған жағдайда олардың электрлік және магниттік өрістері суперпозиция принципі бойынша қосылады.

Жарықтың интерференциясы

[өңдеу | қайнарын өңдеу]

Жарықтың интерференциясы - кеңістіктің әртүрлі нүктесінде когерентті екі немесе бірнеше толқындардың қабаттасуының нәтижесінде орныққан жарық толқындарының күшеюі мен әлсіреуінің суреттемесінің пайда болуы.

Когерентті толқындар - бірдей жиілікті, фаза айырымы тұрақты толқындар (табиғатта когерентті толқындар көздері жоқ). Жарық шоғын екіге бөлу арқылы немесе лазердің көмегімен когерентті жарық көздерін алуға болады.

Фазалар ығысуы тұрақты және жиіліктері бірдей толқындардың қосылуы жарық толқындарының өзара әрекеттесуіндегі көңіл аударатын жағдай. Мұнда кеңістіктің кейбір нүктелерінде толқындардың қабаттасуынан бір-бірін күшейтетін, ал басқа бір нүктелерінде керісінше бір-бірін әлсірететін интерференция құбылысы байқалады. Экранда күңгірт және ашық жолақтар кезектесіп орналасады. Бұл интерференция құбылысы. Жарықтың интерференциясы механикалық толқындардың интерференциясы сияқты өтеді. Жарықтың минимум (әлсіреу) және максимум (күшею) шарттары (4.10) және (4.11) формулаларымен анықталады. Сонымен қатар жарық толқындары интерференциясының кейбір ерекшеліктері бар. Егер екі жарық көзінен бірдей жиілікті синусоидалық жарық толқындары шығарылса, онда олар кездескен жерде интерференция көрінісі пайда болады. Бірақ осы көріністі бір-біріне қатысы жоқ бірдей жарық шығаратын екі жарық көзінен шық қан толқындар арқылы алу мүмкін емес. Жарық толқындарының интерференция құбылысы жоқ деген қорытындыға келгендей боламыз.

Интерференция құбылысын 1675 жылы Томас Юнг Ньютон, одан кейін Юнг және Френель байқаған. Мұны қалай түсіндіруге болады? Шын мәнінде, мәселе толқынның цугінде екен. Дененің әр түрлі атомдары бір-біріне байланыссыз жарық шығарады. Сондықтан олардың жиіліктерінің бірдей болуына қарамастан, әр цугтің фазасы әр түрлі. Ал бұл жарықтың фазасы ретсіз өзгеретін электромагниттік толқын екенін көрсетеді. Сонда екі толқынды бір-біріне қосқанда пайда болған қорытқы толқынның берілген нүктедегі амплитудасы да кездейсоқ түрде бір секундта миллион есе (максимум немесе минимум болып) өзгеріп отырады.

Жарық түскен бет біздің көзімізге біркелкі жарық түскен беттей болып көрінеді. Сондықтан жарық толқынының интерференциясы тек когерентті толқындар қабаттасқанда ғана пайда болады.

Қос сәулелі интерференция және оны іске асыру әдістері

[өңдеу | қайнарын өңдеу]

Когерентті толқындарды интерферометрлердің көмегімен алады. Ең қарапайым түрі — бір жарықты екіге жіктеу.

4.10-сурет

Ағылшын физигі Томас Юнг жарық толқындарының кеңістіктік когеренттігін алды. Ол S жарық көзінің алдына кішкентай саңылауы бар S1 тосқауылды орналастырды. Жарық толқындары ол саңылаудан өтіп, бірдей фазамен бір уақытта екі кішкене S2 және S3 саңылауларға жетеді. Бұл саңылаулар бір-біріне жақын және жарық көзіне қатысты симметриялы орналастырылған (4.10-сурет).

Сондықтан S2 және S3 саңылаулары бір толқындық бетте жатыр деп есептеуге болады. Гюйгенс принципі бойынша толқындық беттің әрбір нүктесі екінші толқын көзі болып табылады.

Френель әдістері

[өңдеу | қайнарын өңдеу]

Когерентті жарық толқынын алудың басқа жолын француз физигі Огюстjн Кан Френель ұсынды. Ол қос призма (бипризма) мен қос айнаны пайдаланды. Бипризма әрқайсысының сыну бұрышы өте аз болып келген бірдей екі призмадан тұрады. Олар бір-біріне табандарымен беттестірілген. Френельдің қос призмасының табанындағы бұрышы өте доғал -175° 179°. S жарық көзінен шыққан сәуле бипризмаға түседі де одан екі жарық толқыны S1 және S2 алынады. Олар шеңбердің бойында орналасқан.

Экранда тұрақты интерференциялық көрініс — кезектесіп орналасқан күңгірт, ақ жолақтар пайда болады. Қос айнаның жұмыс істеу приндипі де жоғарыдағы тәрізді Z1 және Z2 айналары центрі О нүктесі болатын шеңбердің радиусы болсын дейік. Жарық көзі S шеңбердің бойында орналасқан. Z1 және Z2 айналары жарық сәулесін екіге жіктейді, олар экранның бір А нүктесіне жиналады.

Жұқа пленка әдісі

[өңдеу | қайнарын өңдеу]

Су бетіне майдың, мұнайдың, бензиннің тамшысы тамғанда әр түсті сурет пайда болатынын білеміз. Ондай суреттер сабынның көпіршігінде де, инеліктің қанатының үстінде де байқалады (түрлі-түсті қосымшадағы 1-сурет). Бензиннің жұқа қабыршағының бетіне жарық түскенде қандай процесс жүретінін қарастырайық. Бензиннің жұқа қабыршағы жазық параллель пластиналардан алынады. S жарық көзінен шығатын сәуле қабыршақтардан өткенде бірнеше когерентті сәулелерге бөлінеді. Біз жарық интерференциясын түскен жарықтан да, шағылған жарықтан да байқай аламыз. Бензин қабықшасы қалыңдығының үздіксіз өзгеруінен, жұқа қабыршақтағы интерференциялық сурет түрленіп отырады.

Есептеу жұмыстарын жүргізіп, толқынның жұқа қабыршақтағы жол айырымын анықтайтын формуланы табайық:

  1. өтетін жарықта A = 2dncosβ, мұндағы A — толқын жүрісінің жол айырымы, d — қабыршақтың қалыңдығы, п — қабыршақ затының сыну көрсеткіші, р — жарықтың сыну бұрышы;
  2. шағылған жарықта A = 2dncosβ + λ/2 Шағылған жарықта жол айырымына жарты-толқын ұзындығы қосылады, өйткені шағылғанда жарты толқын жоғалады.

Ньютон сақиналары

[өңдеу | қайнарын өңдеу]

Ньютон сақиналары жұқа қабыршақтардағы интерференцияның дербес түрі, ол жұқа қабыршақ қалыңдығының біркелкі өзгеретін жағдайында байқалады. 1675 жылы Ньютон астрономиялық рефрактордың дөңес объективі мен жазық шыны арасындағы жұқа ауа қабатының түсін бақылаған. Ньютон тәжірибесінде тығыз сығылған шыны мен объективтің арасындағы ауаның жұқа қабатының қалыңдығы шыны мен объективтің түйіскен жерінен объективтің сыртқы шетіне қарай біркелкі ұлғая бастайды. Қарапайым есептеу аркылы өткен жарықтың радиусын, мәселен, ақшыл сақинаның радиусын анықтауға болады:

мұндағы r — сақинаның радиусы, R — линза қисығының радиусы, d — жазық шынының бетінен линзаның жарық сынатын бетіне дейінгі арақашықтық. [1]

Дереккөздер

[өңдеу | қайнарын өңдеу]
  1. Физика: Жалпы білім беретін мектептің жаратылыстану-Ф49 математика бағытындағы 11 сыныбына арналған оқулық /С. Түяқбаев, Ш. Насохова, Б. Кронгарт, т.б. — Алматы: "Мектеп" баспасы. — 384 бет, суретті. ISBN 9965-36-055-3