Флуресценттік микроскопия әдісі

Уикипедия — ашық энциклопедиясынан алынған мәлімет
Jump to navigation Jump to search

Тірі жасушаларды зерттеуде флуресценттік микроскопия әдісі мен флуоресценттейтін бояулар кеңінен қолданылады. Оның мәні бір заттардың жарық энергиясын жұтылуында жарықтандыру қасиетіне ие болуымен қорытындыланады. Флуоресценттік сәулелендіру қоздырғышының қатынасы бойынша флуоресценттік спектр әрқашан үлкен ұзындықтағы толқындар жағына ауытқиды. Мысалы, бөлініп алынған хлорофилл ультракүлгін сәуле көмегімен қызыл түспен жарықтанады. Бұл принцип флуоресценттік микроскопияда қолданады: қысқа ұзындықтағы толқын аймағындағы флуоресценттік объектіні қарастыруда. Әдетте мұндай микроскопта көк-күлгін облысында жарық беретін фильтрлер қолданылады. Ультракүлгін толқында толқында жұмыс істейтін люминесценттік микроскоптар ғылыми зерттеу жұмыстарда көп қолданылады.

Өзіндік флуоресценцияда кейбір пигменттер бар (хлорофиллдер, бактериалды пигменттер, витаминдер (А және В2), гормондар. Егер флуоресценттік микроскоппен өсімдік жасушасын қараған кезде күңгірт-көк фонда жасуша ішінен қызыл дәндер ашық көрінеді - бұл хлоропласттар. Флуоресценттік микроскопия әдісінде тірі жасушаларға флуорохромдарды қосуға болады. (флуоресценциялы заттар). Бұл әдіс витальді бояумен ұқсас, яғни бұл жерде өте төмен концентрациясы бар бояу қолданылады (1x10-4-1х10-5) Көптеген флуорохромдар белгілі бір таңдаушы жасуша құрылысымен байланысып, оларды екіншілік люминесценцияға шақырады. Мысалы, сарғыш акринді флуорохром нуклеин қышқылымен таңдаулы байланысады. ДНҚ мономерлік түрдегі ДНҚ-мен байланысқанда жасыл түске флуоросценциаланады, ал димерлік түрдегі РНҚ-да қызыл түске жарықтанады. Сарғыш акриндинмен боялған тірі жасушаларды бақылауда, олардың ядроларында жасыл түсті жарық болады, ол цитоплпазмамен ядрошықта қызыл түс жарқырайды. Осы тірі жасушаларды осы әдістің көмегімен немесе басқа химиялық заттардың шоғырлануын көруге болады (кейбір жағдайда мөлшерін санау). Липидпен, шырыш және керотинмен және т.б. таңдаулы байланысатын флуорохромдар болады.

Таңбаланған флуорохромдық антиденені тірі жасушаға инъецирлеуге болады. Мысалы, тубулин белоктық флуорохроммен байланысқан антиденелерін жасушаларға енгізсе, олар микротүтікшелермен косылады. Осының нәтижесінде мұндай тірі жасушаларды флуоресценттік микроскоптың көмегімен бақылауға болады.

Соңғы кезде тірі жасушаларды немесе олардың компоненттерін зерттеу үшін бейнелерді өңдеуде жарық микроскоптың электронды-компьютермен үйлесімі кеңінен қолдана бастады (әсіресе фазасы қарма-қарсы). Бейнелерді электронды өңдеуде бейнетаспа қолданады, сонымен бірге бақылап отырған құрылымды қарама-қарсы етіп, фондық деңгейді "алып" және белгілейді. Мұндай әдістеме микротүтікше сияқты құрылымды телеэкраннан көруге мүмкіндік береді, жарық микроскоптың рұқсат етілген күнінен (20 нм) аз мөлшерде. Мұндай жүйені қолдануда тек цейтраферлі кино түсірілімді алмастырмайды, сонымен бірге бейнетаспаны қолданады, бейнелерді компьютерлік өңдеуде рұқсат етіледі: құрылым тығыздығының мәліметі туралы, сонымен бірге үш өлшемді ұйымдасу. Тірі жасушаларды зерттеуде бұл әдістің флуоресценттік микроскоппен үйлесімділігі үлкен жетістікке әкеледі. Жарық микроскоптағы жай әдіс микроскоптың терең еместігінен қаралып жатқан объекттің суреті үш өлшемде өңделуі өте қиын. әдетте жасушалар оптикалық кесілім ретінде берілген фокус тереңдігінде қаралады. Объектінің толық үш өлшемді реконструкциясын алуда арнайы конфокальді сканирлік жарық микроскопы қолданылады. Бұл прибордың көмегімен әр түрлі тереңдіктен және компьютерде жинақталған бейнелерден алынған тізбектердің кесілімі алынады. Сонымен бірге үш өлшемді, көлемді бейнеленген объектіні арнайы бағдарламамен құрастырады. Әдетте флуорохроммен боялған объекттер қолданады.[1]

Дереккөздер[өңдеу]

  1. Цитология және гистология. Оқу құралы. Сапаров Қ.Ә. - Алматы: Қазақ университеті, 2009. - 128 бет. ISBN 978-601-247-057-4