Өзіндік емес интеграл
Өзіндік емес интеграл немесе Меншікшіз Интеграл — Риман интегралы бар болуы үшін төмендегі екі шарттың орындалуы қажетті екені белгілі: 1) функцияның интегралдау кесіндісінде шенеулі болуы; 2) интегралдау кесіндісінің ұзындығы шенеулі болуы. Осы екі шарттың ең кемінде біреуінің орындалмауы өзіндік емес интеграл ұғымына әкеледі.[1] Меншікшіз Интеграл – шектелмеген функциялар және шексіз аралықта берілген функцияларды интегралдау кезінде классикалық интеграл ұғымын жалпылау. Екі жағдайда да меншікшіз интеграл қосымша шектік ауысудың көмегімен әдеттегі интеграл арқылы анықталады.
- Егер [a, N] аралығының кез келген ақырғы бөліктерінде f(x) функциясы интегралданса және бар болса, онда оны [a, ) интервалындағы f(x) функциясының меншікшіз интегралы деп атайды және түрінде белгіленеді.
- Егер бұл шек бар болса меншікшіз интеграл жинақты, ал шегі болмаса жинақсыз делінеді.
Меншікшіз интегралдың дәл анықтамасын 1823 жылы О.Коши (1789 – 1857) берген. Меншікшіз интегралды есептеуде параметрлері бойынша дифференциалдау және интегралдау, қатарларға жіктеу, қалынды теориясын қолдану, т.б. әдістер қолданылады.
Пайдаланылған әдебиет
[өңдеу | қайнарын өңдеу]- ↑ Орысша-қазақша түсіндірме сөздік: Математика / 0-71 Жалпы редакциясын басқарған э.ғ.д., профессор Е. Арын - Павлодар: «ЭКО» ҒӨФ. 2007. - 192 б. ISBN 9965-08-339-8
Бұл мақалада еш сурет жоқ.
Мақаланы жетілдіру үшін қажетті суретті енгізіп көмек беріңіз. Суретті қосқаннан кейін бұл үлгіні мақаладан аластаңыз.
|