Сызықтық алгебра

Уикипедия — ашық энциклопедиясынан алынған мәлімет
Jump to navigation Jump to search
Сызықтық алгебра бойынша график

Сызықтық алгебраалгебраның есептердің сандық шешімдерін математикалық бейнелеу және зерттеу процестеріне арналған маңызды бөлімі. Сызықтық алгебраның негізгі есептерінің екеуінің мәні ерекше зор: сызықтық алгебралық теңдеулер жүйесінің шешімі және матрицаның меншікті мәні мен меншікті векторларын анықтау. Басқа да жиі кездесетін есептері: кері матрицаны табу, анықтауышты есептеу, алгебралық көпмүшеліктің түбірін табу. Сызықтық теңдеулер теориясы – сызықтық алгебраның ең алғашқы саласы. Бұл теорияның дамуы нәтижесінде анықтауыштар теориясы, одан кейін матрицалар теориясы және бұған байланысты векторлық кеңістіктер мен сызықтық түрлендірулер теориясы жасалды. Сызықтық алгебраға, сондай-ақ формалар теориясы, оның ішінде квадраттық формалар және ішінара инварианттар теориясы мен тензорлық есептеулер де енеді. Функционалдық анализдің кейбір тараулары сызықтық алгебраның осыған сәйкес мәселелерінің одан әрі дамуы болып есептеледі.

Дереккөздер[өңдеу]

«Қазақстан»: Ұлттық энциклопедия / Бас редактор Ә. Нысанбаев – Алматы «Қазақ энциклопедиясы» Бас редакциясы, 1998 ISBN 5-89800-123-9, VIII том